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Random walks exterior to a rectangle 

Richard Friedbergt 
Department of Physics, University of Illinois at Urbana-Champaign, 11 10 West Green 
Street, Urbana, IL 61801, USA 

Received 5 January 1987 

Abstract. We show how to simulate random walks terminating on the periphery of a 
rectangle, both in the continuum and on a square lattice. The method is error-free in 
principle except for a negligible bias arising from the rejection of very long walks. The 
average machine time would be O[ 11 step in the modified procedure. This method may 
be useful in exploring the distinction between the continuum and the lattice in diffusion- 
limited aggregation. 

1. Introduction 

The simulation of random walks on a lattice can be time consuming; therefore it is 
advisable to make big jumps if this can be done with the correct probabilities. For 
example, in Monte Carlo simulations of DLA cluster growth [ l ,  21 a particle must 
diffuse in from infinity until it touches the cluster. Much of the walk takes place well 
outside the cluster, and it is desirable to accomplish this part by fast techniques 
independent of the cluster shape. 

In the continuum, an excellent procedure in two dimensions is to surround the 
cluster with a circle. Since the space outside the circle is free of obstacles, the probability 
that a walk starting at r from the centre will first enter the circle at R ( r  > R = radius 
of circle) is given by the electrostatic formula for charge induced on a circular conductor 
by a point charge: 

r 2 -  R 2  d 4  
r2-2rR cos d +  R 2  P, (R)  d 4  = 

where = &(r, R ) .  In this way no computer time is wasted on diffusion outside the 
circle. An alternative procedure [3] is to draw a large empty circle around the starting 
point, choose a point on the periphery at random, and start again from there until one 
either hits the cluster or reaches a cut-off distance rmax. In the latter case the walk is 
rejected. Since the circle can be made larger when the walk gets further from the 
cluster, the computing time is only logarithmic in rmax whereas the bias due to the 
rejection falls off as I /  r i a x  In r,,, . 

For a square lattice in two dimensions, the circle method does not yield quite the 
correct probabilities, since it really describes an off-lattice walk. Meakin [4] has 
partially remedied this by switching to an on-lattice walk when close to the cluster. 

t Visiting from Barnard College and Columbia University, New York, NY, USA. 

0305-4470/87/144823 + 18$02.50 0 1987 IOP Publishing Ltd 4823 



4824 R Friedberg 

His claim that this yields results indistinguishable from true on-lattice diffusion is very 
likely correct, but it may still be of interest to have an efficient procedure that is 
rigorously equivalent to on-lattice diffusion. Such a procedure would be based on 
squares rather than circles. Ball and Brady [ 5 ]  have introduced an algorithm based 
on squares, but with some use of continuum probabilities. 

Martin and the author are developing [6] an algorithm that rigorously simulates 
on-lattice diffusion with little sacrifice in computer time. Here we attack only the 
problem of how to simulate the part of the walk well outside the cluster. Assuming 
that the whole cluster lies inside a given rectangle, we must answer two mathematical 
questions. 

(i)  What is the probability distribution of the first entry point on the perimeter of 
the rectangle for a particle diffusing from infinity? 

(ii) What is the distribution of re-entry points after the particle has exited from 
the rectangle at a given point? 

Our method is to break the walk into segments each restricted to a half-plane. The 
notation for this is presented in § 2. In § 3 these segments are studied for the continuum 
version; the walk is then a series of transforms on a function of one variable. This 
function is subjected to the Laplace transform, and the problem of diffusion from 
infinity (equivalent to the charge distribution on an isolated conducting rectangle) 
reduces to the solution of a linear integral equation in the Laplace transform variable. 

In § 4  the same method is applied to the lattice. The Green function on the 
half-plane is expressed in momentum space; one integration is carried out, and the 
other is deformed in the complex plane. The quantity z = eik thus becomes real and 
is the argument of a generating function that replaces the Laplace transform of the 
preceding section. The walk from infinity then reduces to an integral equation only 
slightly more complicated than before. 

Section 5 treats the re-entry problem on the lattice. The aim is to reduce it to a 
fast Monte Carlo procedure. Most walks re-enter immediately on the exit side of the 
rectangle; these can be treated by standard Green functions previously calculated [7]. 
Those that do not can be treated as a series of steps through z space; the essential 
point is that all the kernels turn out to be positive definite so that the final probabilities 
are simulated perfectly by a Monte Carlo procedure based on elementary functions. 

Unfortunately the average number of Monte Carlo steps is infinite because of rare 
walks that go far from the rectangle. However, one may stipulate that the particle is 
lost if it goes too far; thus a walk may be cancelled whenever 1 - z < E << 1. The bias 
thus introduced is -&*(ln(l/&))*,  and the average number of Monte Carlo steps is 
only -In( l / ~ ) .  Since this in turn applies only to the walks that do not re-enter on the 
first jump, the bias can easily be made negligible without increasing the computer time 
beyond 0[1]. 

Section 6 gives conclusions and discusses possible applications. 

2. Notation and methodology 

Throughout this paper, a capital letter F, G, etc, will denote a probability distribution 
(not necessarily normalised) over the perimeter of the rectangle. Since such distribu- 
tions can be added and subtracted, F, G, etc, will be regarded as abstract vectors. 
Thus the variable that would describe a particular point on the perimeter will be 
suppressed. If F is written as a function F ( x ) ,  the argument x stands for an additional 
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parameter on which the distribution depends. If F is a distribution, then denotes 
its sum or integral over the perimeter; for a normalised distribution = 1 .  

We shall consider a rectangle of sides s (horizontal) and s’ (vertical). The vector 
space of distributions F can be transformed by the group of horizontal and vertical 
reflections. We denote a reflection about the horizontal (vertical) axis by 7( 7’). Then 

7 2  = $2 - - 1  T I ’ =  7‘7. (2.1) 

Our method for studying random walks outside the rectangle is as follows. We use 
Cartesian coordinates with the origin at the rectangle’s upper right corner. Suppose 
the particle exits from the top side. Follow its path in the upper half-plane until it 
hits the x axis. This much of the path is called a stride. There are three possibilities. 

(1) The first stride ends on the top side of the rectangle. 
(2) The first stride ends at (x, 0) on the positive x axis. In this case we follow the 

particle thereafter in the right half-plane until it hits they  axis; this is the second stride. 
(3) The first stride ends at ( - (x+s) ,  0) on the negative x axis beyond the upper 

left corner of the rectangle. In  this case we reflect about the vertical axis (introducing 
a factor 7’) and proceed as in case ( 2 ) .  

The second stride can likewise terminate in three ways which are dealt with similarly. 
The third stride has the same possibilities as the first. We continue until a stride 
terminates on the rectangle. 

If the particle comes from infinity, we regard the first stride as terminating with 
uniform probability anywhere on the x axis, and proceed from there. In this case it 
is quickly seen that after any finite number of strides the probability of hitting the 
rectangle is negligible since the distribution along the axis has infinite normalisation. 
But after many strides a limiting distribution is reached on the axis, uniform far away 
from the rectangle and somewhat diminished in its ‘shadow’. The relative probability 
of hitting different parts of the rectangle is then non-uniform as it is dominated by the 
near portion of the axis distribution. 

To avoid dealing with infinite quantities, we shall take as our primary object of 
study the normalised distribution of endpoints (on the rectangle) of walks commencing 
at (x, 0) or (0, y )  on the positive x or y axis. These distributions will be called F ( x )  
and F ’ ( y ) .  The portions (unnormalised) resulting from walks only one stride long will 
be called F , ( x )  and F ; ( y ) .  Then F’ is the sum of three terms arising from the three 
types of termination of the first stride, and is thus a linear combination of FI ,  F and 
7‘F. Likewise F is a linear combination of F , ,  F’ and 7 F ‘ .  Thus F and F’ are given 
by a linear double recursion in which the kernels and sources can be derived from a 
single stride. Once F ( x )  and F ’ ( y )  are known, the distribution for a particle starting 
from infinity or from one side of the square can be found in one step. 

3. Walks from infinity in a continuum 

3.1. Basic equations 

In this section we shall study the probability distribution of initial impact on the 
rectangle by a particle diffusing from infinity through a continuum. This is equivalent 
to the charge distribution on a charged conducting rectangle alone in two-dimensional 
space. We take up this case first because it is simpler than the lattice problem but 
parallel in its solution. 
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A walk in the upper half-plane starting at (0, y )  will terminate on the x axis between 
x and x + d x  with probability 

(3.1) 

Hence the recursion for F‘ is 
m 

F ‘ ( y )  = F l ( y ) + [  ~ ( y ,  x ) F ( x )  d x +  r (y ,  x + s ) v ’ F ( x )  d x  (3.2) 

where F { ( y )  is the distribution (3.1) restricted to the interval (-s, 0)-the top side of 
the rectangle-and 

0 lor 
Y 1  7(y,x)=-- 
T x 2 + y 2 ‘  (3.3) 

Likewise 
m 

~ ( x )  = ~ , ( x )  + JOm T(x, y ) ~ v )  dy + [ T(x, y + s ’ ) v ~ ’ ( y )  dy (3.4) 

where F,  is obtained from (3.1) by interchanging x and y and restricting to (-s’,O) 
on the y axis. 

It is now useful to introduce Laplace transforms. Let 

G(A) = e-AxF(x)  dx (3.5) 

(3.6) 

5: 
~ ( p )  = JOm e-p’YF’(y) dy 

so that G(A) is the unnormalised endpoint distribution for walks whose initial distribu- 
tion is as e-Ax d x  on the x axis, and 

GI(p) = J e-@”FF:(y) dy. 

If we note that (3.3) may be written 
0 

(3.7) 

(3.9) 

then (3.2) becomes 

F‘(y) = F ; ( y ) + i  Io sin AyG(A) dh +- 
and, substituting into (3.6) with the aid of (3.8) and (3.9), 

(3.10) Jm m 

sin Ay e-”q’G(A) dA 
T o  

(3.11) 
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At this point we note that in the approach from infinity we shall only use that part 
of F or G which is symmetric under all reflections. Therefore we can replace 7 = 7‘= 1 
in these equations, provided we symmetrise the final answer. 

It is profitable to study (3.11) and (3.12) on a logarithmic scale. 
Setting 

a = In( As) P = M F )  (3.13) 

and 
H ( a )  d a  = G(A) dA H’(P)  d P  = G‘(CL) d F  

we have (with similar definitions of HI ,  H i )  

and 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
(3.18) 

3.2. Eigenfunctions and eigenvalues 

Our approach to (3.15) and (3.16) is based on the fact that apart from the factors x, 
x’ the kernels are translation invariant. We note that m H ( a )  satisfies an integral 
equation with the symmetric kernel . I-“ 

(3.19) 

where U depends only on ( a ,  - a,) when both a1 and a,  + --CO, since all the ,y + 1. 
Therefore the real eigenfunctions of (T must have the form 

$,(a)=sin(wa+&,) CY + --CO. (3.20) 
The eigenvalues can be found by studying this same asymptotic region. The basic 
integral is 

“ 1  - sech( a - p )  eiwp d p  = sech f ro e’”“ 

from which it follows that for a1 + --CO 
“ 

d a l ,  a2)$,(a2) d a 2 =  I, 
“ 1  

- sech(a2-p)  sin(oa,+$J,) da ,  

“ 1  - - - sech(a , -p)  d p  s e c h f r o  sin(wp+$J,) 

(3.21) 

= sech’ f 
-sech2f rw&,,(al) .  

sin(wa, + 4”) 
(3.22) 
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Since the error can be made as small as desired by taking c y I  + -CO, the eigenvalue for 
I), must be exactly sech’ f TU. 

For a, p + +CO, x and x’ + i ,  Therefore I), in this region has the form sin(& + 4,) 
where a sech’ r4 = sech’ ;TU, or cosh ~4 = $ cosh r w .  This has a real solution only 
if w > w ,  = (2/ T )  cosh-’ 2. If w < w ,  the asymptotic form of +, at a -+ CO is e-’” where 
cos ; rr4 = $ cosh f TU. Thus for w < w ,  there is one eigenfunction with a unique 4,, 
but for w > w ,  there are two independent eigenfunctions. However, there is no need 
to complicate the notation so as to show this. 

We now wish to express m H ( a )  as a sum of eigenfunctions 4, of CT. To this 
end we introduce the weighted transforms 

and likewise f i , ( w ) ,  fiFjl(w), where 

Then (3.15) and (3.16) become 

= f i I , (w)+sech+ ~ w f i ( w )  

and 

f i ( w ) =  H,(w)+sech i  ~ w f i ~ ( w ) .  

Therefore 

where 
1 r= 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

Since U is symmetric in a , ,  a 2 ,  its eigenfunctions are orthogonal and (3.23) can 
be inverted: 

(3.30) 

with y ( w )  to be determined at the end of 0 3.3. (It is understood that for w > w ,  both 
eigenfunctions are present.) With (3.28) this gives 

(3.31) 
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where 

(3.32) 

Thus we have obtained the solution to (3.15) and (3.16) except that we d o  not have 
$w in closed form. However, for the approach from infinity only the region w + 0 is 
important, as we now show. 

3.3. Approach from infinity 

The first stride produces a distribution uniform on the x axis. The probability of hitting 
the rectangle on this stride is infinitesimal. Therefore the distribution of final endpoints 
on the rectangle would be F ( x )  d x  except that this is infinite since F ( x )  = 1 for all 
x. Therefore we take instead the finite distribution 

= lim H ( a ) .  
u - - x  

(3.33) 

Hence we only need 5(a, a’) as a -$ -a. But then the rapid oscillation of $,(a) kills 
the integral in (3.32) except near o = O .  

To be explicit, let h o ( a ) ,  h ; ( P )  be defined by the homogeneous equations 

(3.34) 

so that J x ( a ) h , ( a )  satisfies the eigenvalue equation for w = 0 (eigenvalue = 1). Thus 
for a -$ -a ho(a )  must be linear; we normalise it by 

. dho Iim -=-1. 
o L + - - I x  d a  (3.36) 

(Note that ho 
Now, for 

d+,/da = w. 

is not a capital; its value at any a is a number, not a distribution.) 
any fixed a very large negative, as w + 0, $,(a) = sin w a  = w a  and 
Therefore the normalised relation between ha and  +, is 

- m h o ( a )  = Iim $ , ( a ) / w  
w - 0  

for all a. 
We now write (3.32) in the form 

sin(wa + &) 
~ ( w ,  a, a’) dw 

0 

where 

(3.37) 

(3.38) 

(3.39) 
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As a + -00, we obtain simply 

w + w ( Q ’ )  
c ( w ,  a, a’)+ c ( w ,  a’) = tanh2$ rrw 

Thus 

sin U 
~ ( 0 ,  a’) d v =  -f ~ c ( 0 ,  CY‘) 

V 

where by (3.37) and (3.40) 

C(0, . ’ ) = - ( 4 / r r 2 ) ~ h ~ ( a ’ ) y ( 0 ) .  

(3.40) 

(3.41) 

(3.42) 

Now y ( w )  is the spectral density divided by the normalisation integral. In view 
of (3.42) we confine ourselves to w < 0,. Temporarily impose a boundary condition 
+u(-A) = 0 where A is very large positive. This is equivalent to wA - c # ~ ~  = nrr where 
n is an integer. Therefore the spectral density per unit w is 

1 d  1 
rr d o  rr 

p (  U )  = - - ( UA - C#J~) = - (A + O[ 11) .  

The normalisation integral is 
oc 

+,(a)’da =;A+O[l] .  I-, 
Letting A + 00 we obtain 

y(w)=2/.rr 

which with (3.41) and (3.42) gives 

( ( -00, a ’ )  = ( 4 / T 2 ) m h o ( , ‘ ) .  

From ( 3 . 3 1 )  and (3 .33)  we now obtain 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

“ CO 

=q (1 M a ) x ( a ) H , ( a )  d a  + hb(P>x ’ (P)HI (P)  dP) (3.47) 
rr2 --cp --D 

where we have substituted from (3.30) and used (3.34). 

3.4. Explicit probabilities 

It only remains to express H,, Hi in terms of F , ,  F ;  . Let us define a basic distribution 
Go(h)  which assigns to the interval ( - (u+du) ,  - U )  on the x axis (i.e. an interval of 
length du located on the top side a distance U from the right) a probability e-*’ du 
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(unnormalised). The distribution F' , (y )  assigns to this same interval a probability 
( l / ~ ) y  du/ (u2+y2) ,  and hence G { ( p )  assigns it a probability 

A 
= du loE e-" ~Z+CLZ dA 

which means that 

Go(A) dA. 
" 1  A 

Then if as usual H o ( a )  d a  = Go(A) dh, we have 

" 1  
H ; ( p ) = j  - sech (a -p )Ho(a )da  

271 

(3.48) 

(3.49) 

(3.50) 

and with similar definitions 

(3.51) 
" 1  
-m 27r 

H , ( a ) =  -sech(a - p ) H ; ( p )  dp. 

When these are substituted into (3.47) we obtain, by another application of (3.34) and 
(3.351, 

Fm=A( 71 l-:h;(P)Hb(B)dP+jx -m h d a ) f f 0 ( a )  dn)  

(3.52) 

This is our final result. To recapitulate: first ho and hb must be obtained by numerical 
solution of (3.34) and (3.35).  (The dimensions of the rectangle enter through x and 
x' given by (3.17) and (3 .18) . )  Then (3.52) says that F, assigns to each interval du 
on the top side, U away from the right corner, a probability &(U) du where 

0 ) 
=-(jomhb(lnirs)Gh(ir)dlr+l 2 ho(lnAs)Go(A)dA . 

&(U) =A Iom ho(ln As) e-'" dA 

ot 

7T2 

(3.53) 
71 

and to each interval du on the right side, U away from the top, a probabilityfm du where 

fL( U )  = 7 hb(ln ~ s )  e-+" dk.  (3.54) 
71 Ip 

The true distribution on the rectangle is f (1 + 7) 4 (1 + 7')Fm, obtained by sym- 
metrising F, with respect to reflections, as explained after (3 .12) .  

4. Walks from infinity on a lattice 

4.1. Integrals in momentum space 

For the lattice problem we follow the same procedure as in the last section except that 
integrals over x, y are replaced by sums and the expression in (3 .1)  and (3 .3)  is replaced 
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by a lattice Green function which has no simple form. It can be written as a momentum 
integral: 

eiklx[exp(ik2(y - 1)) - exp(ik2(y + l ) ) ]  
4(sin2 $ k, +sin2 t k2) ~ ( y ,  x) = 4 dk, lo2- dk2 

(2.ir) 

d k  eikr e i k y  

2ir 

where k = k,, and E satisfies 

cos E+ cos k = 2. 

(The integral over k2 yields a pole at kZ = E, le"l< 1.) 
Thus (3.2) and (3.4) become 

F ' ( y )  = F : ( y )  + f FO elkr elcr( 1 + 7' elks) d k  
x = ,  277 

and 

(4.3) 

The Laplace transforms must now be replaced by generating functions. Anticipating 
a later convenience, we define 

A = (1 - z ) / &  I* = (1 - z ' ) / d 7  (4.5) 

and put 
il̂  T 

G(A) =I z x F ( x )  G ' ( p )  = E  z " F ' ( y ) .  
1 1 

Defining G,(A), G : ( p )  similarly, we have from (4.3), if we set z =elk, 

F ' ( y )  = F ; ( y ) + L  lo2- G(A) ei"'(l+ 7)' eikS) d k  
277 

and therefore 

(4.7) 

Here we have put z = eik, i = ei i  and shrunk the contour around the branch cut where 
i is discontinuous. The discontinuity arises from the rule that IiI s 1. Since (4.2) yields 
a quadratic in Z whose two roots are reciprocal, the branch cut occurs in the z plane 
wherever 121 = 1, and Z takes complex conjugate values on opposite sides of the cut. 
Thus the discontinuity in I / (  1 - ZT') is 2i times the imaginary part if z'  is real. The 
branch cut in the z plane goes from zo to 1 on the real line, where zo+z , '=6  or 
zo = 3 -d8. (There is another cut from 1 to l /zo; the two should be regarded as distinct 
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since the contour passes between them-this is made clear if a small ‘mass’ term is 
added to the denominator of the integral in (4.1).) 

We now have, for z on the cut ( / ? I 2  = 1) 

z‘ Im Z - 1 1 - f*Z‘ 
lm-- - Im 

1 -2zI 1 - 2z’ Re f+ z” - 1 - 22’ cos E+ z” 

Im f - Im Z - - 
z’+ z’-I - 2 cos f - z’+ zt-’ + 2  cos k - 4  

Im Z 

z’+  z’-’+ z - i  z-I-4 
- - (4.9) 

where (4.2) was used to go from 5 to z in the denominator. From (4.5) we recognise 
the denominator in the last expression as A’+ p2.  Also, since z = eik, we can write 
(4.5) as 

-2i sin $ k = 2 sin f & (4.10) A = e - l k i 2  - e l k 1 2  = 

in view of (4.2). On the branch cut A is real and therefore f is real, giving 

Im 2 =sin E =  ~ ( 1  - f  A * ) ’ ’ ~ .  (4.11) 

Also 

dA -- - 2i d sin 5 k 
dz/z  = i dk = 

cos k (1 + f A * ) ‘ I 2  ‘ 

Thus (4.8) becomes (note that z = 1 + A = 0, z = zo+ A = 2) 

(4.12) 

(4-A2)’12 A 
G ’ ( p ) = G { ( p ) + -  dA G(A)( 1 + 7‘2’) ___ (4.13) 

7T lo2 (4+A2)’12 A ? + p 2  

and similarly 

(4.14) CL G(  A )  = Gl(A) +- G ’ ( p ) (  1 + 7 ~ ” ’ )  ~ 

A’+P”” 

4.2. Results adapted f rom continuum 

Comparing (4.13) with (3.111, we see that the two are identical except for a factor 
depending only on A. Therefore equations (3.13)-(3.16) hold exacrly as  before provided 
we alter (3.17) and (3.18) to be 

(4.15) 

(4.16) 

and cut off the integrals in (3.15) and (3.16) at +2 instead of +CO. It is understood that 

(4.17) 

The rest of 0 3 can be repeated without change, leading to (3.47) with the integrals 
going from --CO to +2. However, the derivation of (3.52) must be re-examined. 
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Again referring to (4.5), we denote by Go(A) the assignment of relative probability 
z" to the point on the top side of the rectangle, U steps from the right corner. To this 
point F ; ( y )  assigns a probability ~ ( y ,  U )  given by (4.1), and C ; ; ( / * )  assigns 

1 Jc 

I z " T ( ~ ,  U )  =' 2 T  elku (-- 1 - 2' elK 1) d k  

by the same steps that led from (4.8) to (4.13). 
It follows that 

and with a similar definition of Gh(p) 

(4.18) 

(4.19) 

(4.20) 

Thus 

(4.21) 

where ho, hb are still determined by (3.34) and (3.35), but with x, x' given by (4.15) 
and (4.16). Equations (3.53) and (3.54) are replaced by 

and 

(4.22) 

(4.23) 

with (4.5) assumed as usual. There is no longer a factor du in the probability. F, 
must be symmetrised as before. 

5. Re-entry on a lattice 

5.1. Monte Carlo procedure 

We now take up the re-entry problem. The particle has just exited from a specified 
point on the perimeter, and we want its re-entry distribution. 

We first study an auxiliary problem: how will the endpoints be distributed on the 
rectangle if the starting points are distributed on the positive x axis in proportion to 
zx, where z is a given positive real number< l? Obviously the endpoint distribution 
is given, apart from normalisation, by G(A) as in (4.5) and (4.6). G(A) is determined 
by (4.13) and (4.14). 

The method of eigenfunctions does not appear useful here, as we would need to 
know all the eigenfunctions and not just the limit when w + 0. We take our departure 
instead from the fact that (if 77 = 7'' 1) all the factors in (4.13) and (4.14) are positive 
definite and so these equations can be converted into a Monte Carlo prescription. 
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Actually we must not set 7 = 7’ = 1 since the starting distribution is not symmetrised. 
However, this presents no obstacle, as we shall see. First, let us describe how to 
proceed without the factors 7 and 7‘. 

We wish the first step to be a selection of p. Therefore we use (4.20) to write (4.14) 
(with ~ = 1 )  as 

where the definitions (4.5) and  (4.6) still hold. To make this a prescription for choosing 
p, we must normalise the quantity in square brackets. Since G; (p )  assigns probabilities 
z‘” (U = 0, 1, . . . , s’), its normalisation is 

Likewise 

Therefore, 

+ z‘( 1 + 2’”’ )  1 - z f s ’+ l  

G g p )  + Gyp)( 1 + z“’) = 
1 - z ‘  

1 + 2’ (4+ p y  

1 - z ’  P 
- - 

We can now write (5 .1 )  as 

(5 .3 )  

(5.4) 

(5.5) 

where P’( p )  is the normalised probability distribution over the rectangle, proportional 
to G ; ( p ) + ( l + z ” ) G ‘ ( p ) .  Hence the first step is to select p between 0 and 2 with a 
probability measure proportional to ( 4 - ~ ’ ) l ’ ~  d p / ( A 2 + p 2 ) .  This can be done quickly 
by picking tan-’(p/A) uniformly between 0 and  T,  rejecting p > 2 ,  and applying a 
rejection factor (1 - a  p2)”*  otherwise. 

Once p is selected, we must proceed so as to realise the distribution P ’ ( p ) .  This 
is easily done as follows. Let us refer to our starting position, in which the particle 
was distributed as zx over the positive x axis, as ‘horizontal stride position’. Likewise 
in ‘vertical stride position’ it is distributed as z”  on the positive y axis. From the 
horizontal stride position we select p as above. Then we toss a biased coin whose 
probability of heads is z ’ / ( l + z ’ ) ,  the ratio of (5 .3)  to (5.4). If it lands heads, we go 
into vertical stride position with the selected p. If it is tails, we choose a random 
number r between 0 and  1. If r < z”+’ ,  we enter vertical stride position also. If 
r > z”+’ ,  we enter the rectangle on the right side, U steps from the top, where U is the 
largest integer such that r < z”’. (This realises G ; ( p ) . )  

From the vertical stride position we proceed similarly: select A with measure 
(4-A’)”’ d A / ( A 2 + p 2 )  between 0 and 2 ,  throw a biased coin with probability z / ( l +  z) 
of heads (always using (4.5)); if heads, go into horizontal stride position with new A ;  
if tails, choose r ;  if r < z‘+’, go into horizontal stride position also; otherwise re-enter 
top side of rectangle U steps from right where U is largest integer with r < z“. 



4836 R Friedberg 

This procedure would always end up on the top or right side of the rectangle, 
because we have left out the factors 7, 7'. However, they are easily included. The 
factor 7 should have entered whenever we went into vertical stride position after a 
throw of tails. Call this an 7 event. Likewise, an 7' event takes place whenever we 
go into horizontal stride position after a throw of tails. Since the reflections commute, 
we have only to count these events. At the end of the walk, we reflect about the 
horizontal axis if there were an  odd number of 7 events, and also about the vertical 
axis if there were an  odd number of 77' events. In  this way the endpoints are distributed 
all over the rectangle. 

We now return to the original problem: suppose the walk begins with an exit from 
the top side, U steps from the right. (Other sides are handled similarly.) We assume 
we have really exited so that the walk begins at (-U, 1). Then the probability that the 
first stride ends at (x, 0) is g , ( x +  U )  where 

(5.6) 

in accordance with (4.1). (We can take x+lxl  since T is even in x.) Shrinking the 
contour in the z plane down to the branch cut and using z = elk, i = e as in D 4, this 
becomes 

I C  

Im i 

in view of (4.11) and (4.12). Again all factors are positive definite, and so we interpret 
(5.7) as the first step in a Monte Carlo procedure. 

The normalisation of zIr1 is 

Jc 1 + z (41- A')" '  

- X  1 - 2  A 
c Z I Y  =-= (5.8) 

and therefore the correct probability measure for A is proportional to (4-A'))' dA, 
between 0 and 2. The first step is to choose A with this measure. 

Once A is selected, the probability distribution is z'' on the x axis; therefore we 
need only slightly modify the procedure used when coming from vertical stride position. 
We flip the same biased coin as before (heads z / (  1 + z )  of the time). We also pick r 
uniformly from 0 to 1. If the coin is heads, we enter horizontal stride position if r < z " ;  
otherwise we re-enter the rectangle U steps to the right of our exit point, where t' is 
the smallest integer such that r >  zL. If the coin is tails, we enter horizontal stride 
position (an  77' event) if r < z'"'+'; otherwise we re-enter the rectangle U steps to the 
left of our exit, where now U is the largest integer such that r < z L .  (Note that U can 
be zero only if the coin turns up  tails; that is why the coin must be biased.) 

5.2. Cut-of f o r  long walks 

This completes the description of the Monte Carlo procedure, but we must now ask 
how soon it terminates. The probability of immediate termination is small when z or 
z '+  1, i.e. when A or p + 0. In terms of a =In  A s  or p =In  ps, as in § 3, this means 
that walks for which a becomes large negative can be long. Since in this region 



Random walks exterior to a rectangle 4837 

, y ( a ) = x ’ ( p ) =  1, we can drop the distinction between a and p and say that the walk 
occurs in a space with a step A a  distributed as sech La.  

Now an  unbiased random walk in one dimension has an  infinite average length 
before returning to the origin. This means that some rare very long walks will dominate 
the computer time; these correspond to the walks in position space that go far from 
the rectangle. It is necessary to eliminate these walks by putting a cut-off on A, say 
by rejecting any walk for which we generate a A < A. where Aos << 1 is a fixed number. 
We must now estimate both the bias thereby introduced and the average number of 
strides to a walk, as a function of A o .  

We may form an idea of the bias by remembering the electrostatic analogy. The 
charge distribution induced on the rectangle by a far-off charge may be expanded in 
multipoles, where the monopole term is independent of the position of the inducing 
charge. To reject the walk is to replace it by a new walk from infinity, so that the 
monopole term is retained and the others discarded. The leading error is from the 
dipole term which is of relative order s / x ,  x being the distance. Thus we should expect 
that rejecting the walk at A = A. would cause an error 

1 - z  1 1 
Z 1 - z  A0  

- ( f z ‘ s / x )  ( f z ‘) ~ = - s In - = Aos In - 

This estimate is confirmed by studying the Monte Carlo process. Starting in 
horizontal stride position, the dipole term is dominated by walks that end in one stride, 
since afterward the particle tends to forget which side it came from. After p is chosen, 
the probability of entering the rectangle immediately is f( 1 - z’”+’) = ;( 1 - e-pi’), and  
so the total fraction of walks that end in one stride is roughly 

1 iE sin(A,s’w) dw 
=GIo w ( w + l )  

confirming the previous estimate, if s 

(5.9) 

and  s’ are of the same order. The factor 1 / 2 r  
represents rationalised units, and the term in In s’ is a non-dipole contribution. (We 
have used (3.9) with changed variables.) 

For a more detailed estimate, we resolve into eigenspaces of 7, 7‘. The space with 
77, v ’= 1 should contain principally a quadrupole correction 

and  indeed we find that the result of replacing H ( a )  by H ( - a )  is, according to (3.32), 
mainly the omission of a double pole at w = 2i, which should contribute in proportion 
to d/dwl,,2, e i w ’ a l  or to la1 (A0s)’ ln( l /hos) .  The space with 77 = 1, 7 ’ =  -1 
contributes mainly the term ( 1/27r)Aos’ In( l/Aos’) noted above. For 7 = -1, the first 
stride contribution involves only differences between z” and z ’ “ - ” ,  so that it has an  
extra factor - 1 - z” - 1 - e-w5’ which gives an  extra factor Aos’ to the last line of (5.9); 
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the passage to vertical stride involves a factor 1 + 7 z P  = 1 - z” which multiplies all 
subsequent corrections. 

Thus the main errors are O[(Aos)’ln(l/Aos)] from the symmetric sector, and 
(1/2x)A0s‘ In(l/Aos) from q-’= -1. But the antisymmetric sectors are already reduced 
by the time the walk gets to h a ,  by a similar dipole factor. That is, the particle can 
forget which side is which as easily on the way out as on the way in. Therefore the 
dominant error is really about 

(5.10) 

which is still larger than the quadrupole term. (We are assuming that s and s‘ are of 
the same order.) 

To study the average number of strides, we may regard (5.5) as describing a walk 
in (Y (or  p )  space for which (when Ascc 1, p’<< 1) the kernel is proportional to 
sech(a - p ) .  The mean square length of a step is 

(I‘ A2 sech A dP)(  sech A dA)-’ = ( 4  ir) ’. 
--3: --r 

Therefore if we start at As- 1, the cut-off is n steps away where 

2 1  
In - 

ir A,s 
n = -  

(5.11) 

(5.12) 

In a one-dimensional random walk of fixed-length steps between two walls n steps 
apart, the average number of steps between impacts is exactly n. Here the steps are 
not uniform, but the asymptotic behaviour must be the same. Therefore a walk will 
contain O [ n ]  strides on the average, once it reaches A - l / s .  

However, the first choice of A is distributed quasiuniformly from 0 to 2 .  Thus one 
usually starts with As >> 1, so that the probability of survival after each stride is 
5 = ~ ( 1 + z ’ ) = ~ ( l + e ~ ” ) ~ ~ .  Forawa lk  with kernel ( [ / x ) s e c h ( a - p ) ,  the probability 
of arrival from CY to p after any number of steps is 

-- 2 [ s i n h [ ( 2 - ~ ) ( a - p ) ]  - 
ir (1 - 5 2 ) ’ ’ 2  sinh  CY - p )  

where cos 4 T K  = 5. Thus for 5 = 4 the probability is 

(5.13) 

(5.14) 

if CY - p  is large. So the average number of strides in a walk starting from As >> 1 is of 
the order 

n exp(-i  In As) - In( l/Aos). (5.15) 

The preceding calculation holds only near the corner. If we must shoot for the 
corner from U steps away there is an  additional factor z” on the first step of the Monte 
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Carlo procedure. Say that u >> 1 ;  then for A 2 l / u  this factor makes the likelihood of 
escape very small. The average number of steps for all A is then of order 

m( U )  - In -   AS)-^'^ e-"' dA 
Aos 5' 0 

1 s 1 --(U> S I n \ o ; v .  (5.16) 

This quantity should be averaged over U, with a weighting factor representing the 
distribution of exits. For large s it seems reasonable that this distribution is given by 
some function w ( u / s )  and that the overall number of strides per exterior walk is 

1 1  
s A ~ s  

f~ = jo' m ( v s ) w ( v )  dv--In- (5 .17 )  

always neglecting factors O[ 1 1 .  
The bias introduced by the cut-off must also be multiplied by the frequency with 

which the cut-off is applied. Starting from As - 1 ,  the probability of reaching a wall 
n steps away before returning to the origin is O[l/n]. Therefore the average error is 
given by replacing O[n] by O[l/n] in (5 .17)  and multiplying by (5.10). This yields 
(if s - s') 

- 1 (In $ ) - I (  Aos In &)2 = Ais In - 1 . 
S Aos 

(5.18) 

The implication of (5 .17)  is that i f s  is large we can set A o -  ( l / s )  e-' and still have 
f i  - 1 so that long walks will not dominate the computer time. Then (5 .18)  says that 
the average error per walk is Ais' which is e-2i. If s = 100, e*' - so that the bias 
due to the cut-off is equivalent to a gross misplacement of one in every particles. 
To perceive this bias above statistical noise one would need a sample of clusters 
containing io9* particles. 

We conclude that the problem of long walks need not worry us. 

6.  Conclusions 

We have given solutions of a rather different kind for the two problems studied. For 
the approach to infinity the selection of entry point is made in the standard manner 
according to a probability distribution. This distribution is given by (3.52) once the 
functions hO(a) ,  h b ( P )  are determined. They in turn are defined by the non-trivial 
equations (3 .33)  and (3 .34) .  These equations must be solved numerically, perhaps by 
iteration. However, there is plenty of time to d o  this since it only has to be done once 
for each size rectangle. In simulating DLA one might, for example, multiply either s 
or s'  by three whenever the cluster breaks out of the rectangle. Then to make a cluster 
of lo6 points one would not need more than about twelve rectangles. So the time spent 
on a very accurate calculation of hO, hh would be unimportant. 

For the re-entry problem we d o  not calculate the probability distribution. Instead 
we introduce an auxiliary Monte Carlo process which has the same final probabilities 
as those desired. This process is much faster than the original random walk because 
it goes a whole stride at a time, but still requires only elementary functions at each stride. 
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The simulated probabilities are exact except for the neglect of very long walks. 
But the discussion in § 5 makes it clear that the resulting bias can be made small 
without much cost in machine time. Thus the only significant errors will be those due 
to the implementation of the procedure: finite statistics, machine rounding, and inter- 
polation and truncation errors in the solution of (3.34) and (3.35). 

Since for a large rectangle most re-entries take place in just one stride, it appears 
that in the simulation of DLA the computing time spent on walks outside the containing 
rectangle will be a negligible fraction of the whole. 
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